RecurJac: An Efficient Recursive Algorithm for Bounding Jacobian Matrix of Neural Networks and Its Applications

Author:

Zhang Huan,Zhang Pengchuan,Hsieh Cho-Jui

Abstract

The Jacobian matrix (or the gradient for single-output networks) is directly related to many important properties of neural networks, such as the function landscape, stationary points, (local) Lipschitz constants and robustness to adversarial attacks. In this paper, we propose a recursive algorithm, RecurJac, to compute both upper and lower bounds for each element in the Jacobian matrix of a neural network with respect to network’s input, and the network can contain a wide range of activation functions. As a byproduct, we can efficiently obtain a (local) Lipschitz constant, which plays a crucial role in neural network robustness verification, as well as the training stability of GANs. Experiments show that (local) Lipschitz constants produced by our method is of better quality than previous approaches, thus providing better robustness verification results. Our algorithm has polynomial time complexity, and its computation time is reasonable even for relatively large networks. Additionally, we use our bounds of Jacobian matrix to characterize the landscape of the neural network, for example, to determine whether there exist stationary points in a local neighborhood.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Certification of avionic software based on machine learning: the case for formal monotony analysis;International Journal on Software Tools for Technology Transfer;2024-03-12

2. Career Advice System Design Based on Neural Network;Proceedings of the 2024 3rd International Conference on Cryptography, Network Security and Communication Technology;2024-01-19

3. Efficient Verification of Neural Networks Against LVM-Based Specifications;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

4. SoK: Certified Robustness for Deep Neural Networks;2023 IEEE Symposium on Security and Privacy (SP);2023-05

5. Certified Defense for Content Based Image Retrieval;2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2023-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3