Differential Networks for Visual Question Answering

Author:

Wu Chenfei,Liu Jinlai,Wang Xiaojie,Li Ruifan

Abstract

The task of Visual Question Answering (VQA) has emerged in recent years for its potential applications. To address the VQA task, the model should fuse feature elements from both images and questions efficiently. Existing models fuse image feature element vi and question feature element qi directly, such as an element product viqi. Those solutions largely ignore the following two key points: 1) Whether vi and qi are in the same space. 2) How to reduce the observation noises in vi and qi. We argue that two differences between those two feature elements themselves, like (vi − vj) and (qi −qj), are more probably in the same space. And the difference operation would be beneficial to reduce observation noise. To achieve this, we first propose Differential Networks (DN), a novel plug-and-play module which enables differences between pair-wise feature elements. With the tool of DN, we then propose DN based Fusion (DF), a novel model for VQA task. We achieve state-of-the-art results on four publicly available datasets. Ablation studies also show the effectiveness of difference operations in DF model.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3