Author:
Bunte Andreas,Stein Benno,Niggemann Oliver
Abstract
This paper introduces a novel approach to Model-Based Diagnosis (MBD) for hybrid technical systems. Unlike existing approaches which normally rely on qualitative diagnosis models expressed in logic, our approach applies a learned quantitative model that is used to derive residuals. Based on these residuals a diagnosis model is generated and used for a root cause identification. The new solution has several advantages such as the easy integration of new machine learning algorithms into MBD, a seamless integration of qualitative models, and a significant speed-up of the diagnosis runtime. The paper at hand formally defines the new approach, outlines its advantages and drawbacks, and presents an evaluation with real-world use cases.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献