Author:
Dann Michael,Zambetta Fabio,Thangarajah John
Abstract
Sparse reward games, such as the infamous Montezuma’s Revenge, pose a significant challenge for Reinforcement Learning (RL) agents. Hierarchical RL, which promotes efficient exploration via subgoals, has shown promise in these games. However, existing agents rely either on human domain knowledge or slow autonomous methods to derive suitable subgoals. In this work, we describe a new, autonomous approach for deriving subgoals from raw pixels that is more efficient than competing methods. We propose a novel intrinsic reward scheme for exploiting the derived subgoals, applying it to three Atari games with sparse rewards. Our agent’s performance is comparable to that of state-of-the-art methods, demonstrating the usefulness of the subgoals found.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献