Graph CNNs with Motif and Variable Temporal Block for Skeleton-Based Action Recognition

Author:

Wen Yu-Hui,Gao Lin,Fu Hongbo,Zhang Fang-Lue,Xia Shihong

Abstract

Hierarchical structure and different semantic roles of joints in human skeleton convey important information for action recognition. Conventional graph convolution methods for modeling skeleton structure consider only physically connected neighbors of each joint, and the joints of the same type, thus failing to capture highorder information. In this work, we propose a novel model with motif-based graph convolution to encode hierarchical spatial structure, and a variable temporal dense block to exploit local temporal information over different ranges of human skeleton sequences. Moreover, we employ a non-local block to capture global dependencies of temporal domain in an attention mechanism. Our model achieves improvements over the stateof-the-art methods on two large-scale datasets.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-Modal Transformer with Skeleton and Text for Action Recognition;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

2. Badminton Movement Quality Assessment Through Kinect Sensor Data Using NDT-GCN Algorithm;IEEE Sensors Journal;2024-06-15

3. Causality-Enhanced Multiple Instance Learning With Graph Convolutional Networks for Parkinsonian Freezing-of-Gait Assessment;IEEE Transactions on Image Processing;2024

4. Deep video representation learning: a survey;Multimedia Tools and Applications;2023-12-19

5. Lightweight Multi-Scale Spatiotemporal Graph Convolutional Network for Skeleton-Based Action Recognition;2023 Eleventh International Conference on Advanced Cloud and Big Data (CBD);2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3