Hybrid Attention-Based Prototypical Networks for Noisy Few-Shot Relation Classification

Author:

Gao Tianyu,Han Xu,Liu Zhiyuan,Sun Maosong

Abstract

The existing methods for relation classification (RC) primarily rely on distant supervision (DS) because large-scale supervised training datasets are not readily available. Although DS automatically annotates adequate amounts of data for model training, the coverage of this data is still quite limited, and meanwhile many long-tail relations still suffer from data sparsity. Intuitively, people can grasp new knowledge by learning few instances. We thus provide a different view on RC by formalizing RC as a few-shot learning (FSL) problem. However, the current FSL models mainly focus on low-noise vision tasks, which makes them hard to directly deal with the diversity and noise of text. In this paper, we propose hybrid attention-based prototypical networks for the problem of noisy few-shot RC. We design instancelevel and feature-level attention schemes based on prototypical networks to highlight the crucial instances and features respectively, which significantly enhances the performance and robustness of RC models in a noisy FSL scenario. Besides, our attention schemes accelerate the convergence speed of RC models. Experimental results demonstrate that our hybrid attention-based models require fewer training iterations and outperform the state-of-the-art baseline models. The code and datasets are released on https://github.com/thunlp/ HATT-Proto.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 156 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3