Abstract
Massive amount of spatio-temporal data that contain location and text content are being generated by location-based social media. These spatio-temporal messages cover a wide range of topics. It is of great significance to discover local trending topics based on users’ location-based and topicbased requirements. We develop a region-based message exploration mechanism that retrieve spatio-temporal message clusters from a stream of spatio-temporal messages based on users’ preferences on message topic and message spatial distribution. Additionally, we propose a region summarization algorithm that finds a subset of representative messages in a cluster to summarize the topics and the spatial attributes of messages in the cluster. We evaluate the efficacy and efficiency of our proposal on two real-world datasets and the results demonstrate that our solution is capable of high efficiency and effectiveness compared with baselines.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献