Learning Resource Allocation and Pricing for Cloud Profit Maximization

Author:

Du Bingqian,Wu Chuan,Huang Zhiyi

Abstract

Cloud computing has been widely adopted to support various computation services. A fundamental problem faced by cloud providers is how to efficiently allocate resources upon user requests and price the resource usage, in order to maximize resource efficiency and hence provider profit. Existing studies establish detailed performance models of cloud resource usage, and propose offline or online algorithms to decide allocation and pricing. Differently, we adopt a blackbox approach, and leverage model-free Deep Reinforcement Learning (DRL) to capture dynamics of cloud users and better characterize inherent connections between an optimal allocation/pricing policy and the states of the dynamic cloud system. The goal is to learn a policy that maximizes net profit of the cloud provider through trial and error, which is better than decisions made on explicit performance models. We combine long short-term memory (LSTM) units with fully-connected neural networks in our DRL to deal with online user arrivals, and adjust the output and update methods of basic DRL algorithms to address both resource allocation and pricing. Evaluation based on real-world datasets shows that our DRL approach outperforms basic DRL algorithms and state-of-theart white-box online cloud resource allocation/pricing algorithms significantly, in terms of both profit and the number of accepted users.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Management of resource sharing in emergency response using data-driven analytics;Annals of Operations Research;2023-12-19

2. Multi-Agent Reinforcement Learning for Resource Allocation in Large-Scale Robotic Warehouse Sortation Centers;2023 62nd IEEE Conference on Decision and Control (CDC);2023-12-13

3. Time-Dependent Pricing and Scheduling for Cloud Object Storage Service Providers;2023 IEEE 16th International Conference on Cloud Computing (CLOUD);2023-07

4. Fast DRL-based scheduler configuration tuning for reducing tail latency in edge-cloud jobs;Journal of Cloud Computing;2023-06-17

5. Robustified Learning for Online Optimization with Memory Costs;IEEE INFOCOM 2023 - IEEE Conference on Computer Communications;2023-05-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3