Author:
Chen Ziyu,Jiang Xingqiong,Deng Yanchen,Chen Dingding,He Zhongshi
Abstract
Belief propagation approaches, such as Max-Sum and its variants, are important methods to solve large-scale Distributed Constraint Optimization Problems (DCOPs). However, for problems with n-ary constraints, these algorithms face a huge challenge since their computational complexity scales exponentially with the number of variables a function holds. In this paper, we present a generic and easy-touse method based on a branch-and-bound technique to solve the issue, called Function Decomposing and State Pruning (FDSP). We theoretically prove that FDSP can provide monotonically non-increasing upper bounds and speed up belief propagation based incomplete DCOP algorithms without an effect on solution quality. Also, our empirically evaluation indicates that FDSP can reduce 97% of the search space at least and effectively accelerate Max-Sum, compared with the state-of-the-art.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献