Partial Multi-Label Learning by Low-Rank and Sparse Decomposition

Author:

Sun Lijuan,Feng Songhe,Wang Tao,Lang Congyan,Jin Yi

Abstract

Multi-Label Learning (MLL) aims to learn from the training data where each example is represented by a single instance while associated with a set of candidate labels. Most existing MLL methods are typically designed to handle the problem of missing labels. However, in many real-world scenarios, the labeling information for multi-label data is always redundant , which can not be solved by classical MLL methods, thus a novel Partial Multi-label Learning (PML) framework is proposed to cope with such problem, i.e. removing the the noisy labels from the multi-label sets. In this paper, in order to further improve the denoising capability of PML framework, we utilize the low-rank and sparse decomposition scheme and propose a novel Partial Multi-label Learning by Low-Rank and Sparse decomposition (PML-LRS) approach. Specifically, we first reformulate the observed label set into a label matrix, and then decompose it into a groundtruth label matrix and an irrelevant label matrix, where the former is constrained to be low rank and the latter is assumed to be sparse. Next, we utilize the feature mapping matrix to explore the label correlations and meanwhile constrain the feature mapping matrix to be low rank to prevent the proposed method from being overfitting. Finally, we obtain the ground-truth labels via minimizing the label loss, where the Augmented Lagrange Multiplier (ALM) algorithm is incorporated to solve the optimization problem. Enormous experimental results demonstrate that PML-LRS can achieve superior or competitive performance against other state-of-the-art methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Incomplete label distribution learning via label correlation decomposition;Information Fusion;2025-01

2. A ranking-based problem transformation method for weakly supervised multi-label learning;Pattern Recognition;2024-09

3. UNM: A Universal Approach for Noisy Multi-Label Learning;IEEE Transactions on Knowledge and Data Engineering;2024-09

4. Noisy Label Removal for Partial Multi-Label Learning;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24

5. A two-stage multi-view partial multi-label learning for enhanced disambiguation;Knowledge-Based Systems;2024-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3