Adversarial Unsupervised Representation Learning for Activity Time-Series

Author:

Aggarwal Karan,Joty Shafiq,Fernandez-Luque Luis,Srivastava Jaideep

Abstract

Sufficient physical activity and restful sleep play a major role in the prevention and cure of many chronic conditions. Being able to proactively screen and monitor such chronic conditions would be a big step forward for overall health. The rapid increase in the popularity of wearable devices pro-vides a significant new source, making it possible to track the user’s lifestyle real-time. In this paper, we propose a novel unsupervised representation learning technique called activ-ity2vecthat learns and “summarizes” the discrete-valued ac-tivity time-series. It learns the representations with three com-ponents: (i) the co-occurrence and magnitude of the activ-ity levels in a time-segment, (ii) neighboring context of the time-segment, and (iii) promoting subject-invariance with ad-versarial training. We evaluate our method on four disorder prediction tasks using linear classifiers. Empirical evaluation demonstrates that our proposed method scales and performs better than many strong baselines. The adversarial regime helps improve the generalizability of our representations by promoting subject invariant features. We also show that using the representations at the level of a day works the best since human activity is structured in terms of daily routines.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Self-Supervised Learning for Time Series Analysis: Taxonomy, Progress, and Prospects;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-10

2. Time-series representation learning via Time-Frequency Fusion Contrasting;Frontiers in Artificial Intelligence;2024-06-12

3. Semi-supervised contrastive regression for pharmaceutical processes;Expert Systems with Applications;2024-03

4. Self-Supervised Contrastive Representation Learning for Semi-Supervised Time-Series Classification;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-12

5. The Context Hierarchical Contrastive Learning for Time Series in Frequency Domain;Communications in Computer and Information Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3