An End-to-End Automatic Cache Replacement Policy Using Deep Reinforcement Learning

Author:

Zhou Yang,Wang Fang,Shi Zhan,Feng Dan

Abstract

In the past few decades, much research has been conducted on the design of cache replacement policies. Prior work frequently relies on manually-engineered heuristics to capture the most common cache access patterns, or predict the reuse distance and try to identify the blocks that are either cache-friendly or cache-averse. Researchers are now applying recent advances in machine learning to guide cache replacement policy, augmenting or replacing traditional heuristics and data structures. However, most existing approaches depend on the certain environment which restricted their application, e.g, most of the approaches only consider the on-chip cache consisting of program counters (PCs). Moreover, those approaches with attractive hit rates are usually unable to deal with modern irregular workloads, due to the limited feature used. In contrast, we propose a pervasive cache replacement framework to automatically learn the relationship between the probability distribution of different replacement policies and workload distribution by using deep reinforcement learning. We train an end-to-end cache replacement policy only on the past requested address through two simple and stable cache replacement policies. Furthermore, the overall framework can be easily plugged into any scenario that requires cache. Our simulation results on 8 production storage traces run against 3 different cache configurations confirm that the proposed cache replacement policy is effective and outperforms several state-of-the-art approaches.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3