Explaining Path Plan Optimality: Fast Explanation Methods for Navigation Meshes Using Full and Incremental Inverse Optimization

Author:

Brandão Martim,Coles Amanda,Magazzeni Daniele

Abstract

Path planners are important components of various products from video games to robotics, but their output can be counter-intuitive due to problem complexity. As a step towards improving the understanding of path plans by various users, here we propose methods that generate explanations for the optimality of paths. Given the question "why is path A optimal, rather than B which I expected?", our methods generate an explanation based on the changes to the graph that make B the optimal path. We focus on the case of path planning on navigation meshes, which are heavily used in the computer game industry and robotics. We propose two methods - one based on a single inverse-shortest-paths optimization problem, the other incrementally solving complex optimization problems. We show that these methods offer computation time improvements of up to 3 orders of magnitude relative to domain-independent search-based methods, as well as scaling better with the length of explanations. Finally, we show through a user study that, when compared to baseline cost-based explanations, our explanations are more satisfactory and effective at increasing users' understanding of problems.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Generating Environment-based Explanations of Motion Planner Failure: Evolutionary and Joint-Optimization Algorithms;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Planning of Explanations for Robot Navigation;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

3. Exploring the Impact of Explanation Representation on User Satisfaction in Robot Navigation;Proceedings of the 2024 International Symposium on Technological Advances in Human-Robot Interaction;2024-03-09

4. Towards a Holistic Framework for Explainable Robot Navigation;Springer Proceedings in Advanced Robotics;2024

5. Attacking Shortest Paths by Cutting Edges;ACM Transactions on Knowledge Discovery from Data;2023-11-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3