A Competitive Analysis of Online Multi-Agent Path Finding

Author:

Ma Hang

Abstract

We study online Multi-Agent Path Finding (MAPF), where new agents are constantly revealed over time and all agents must find collision-free paths to their given goal locations. We generalize existing complexity results of (offline) MAPF to online MAPF. We classify online MAPF algorithms into different categories based on (1) controllability (the set of agents that they can plan paths for at each time) and (2) rationality (the quality of paths they plan) and study the relationships between them. We perform a competitive analysis for each category of online MAPF algorithms with respect to commonly-used objective functions. We show that a naive algorithm that routes newly-revealed agents one at a time in sequence achieves a competitive ratio that is asymptotically bounded from both below and above by the number of agents with respect to flowtime and makespan. We then show a counter-intuitive result that, if rerouting of previously-revealed agents is not allowed, any rational online MAPF algorithms, including ones that plan optimal paths for all newly-revealed agents, have the same asymptotic competitive ratio as the naive algorithm, even on 2D 4-neighbor grids. We also derive constant lower bounds on the competitive ratio of any rational online MAPF algorithms that allow rerouting. The results thus provide theoretical insights into the effectiveness of using MAPF algorithms in an online setting for the first time.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Robust Multi-Agent Pickup and Delivery with Delays;2023 European Conference on Mobile Robots (ECMR);2023-09-04

2. Intelligent planning for large‐scale multi‐agent systems;AI Magazine;2022-12

3. Graph-Based Multi-Robot Path Finding and Planning;Current Robotics Reports;2022-06-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3