Is the Sample Good Enough? Comparing Data from Twitter's Streaming API with Twitter's Firehose

Author:

Morstatter Fred,Pfeffer Jürgen,Liu Huan,Carley Kathleen

Abstract

Twitter is a social media giant famous for the exchange of short, 140-character messages called "tweets". In the scientific community, the microblogging site is known for openness in sharing its data. It provides a glance into its millions of users and billions of tweets through a "Streaming API" which provides a sample of all tweets matching some parameters preset by the API user. The API service has been used by many researchers, companies, and governmental institutions that want to extract knowledge in accordance with a diverse array of questions pertaining to social media. The essential drawback of the Twitter API is the lack of documentation concerning what and how much data users get. This leads researchers to question whether the sampled data is a valid representation of the overall activity on Twitter. In this work we embark on answering this question by comparing data collected using Twitter's sampled API service with data collected using the full, albeit costly, Firehose stream that includes every single published tweet. We compare both datasets using common statistical metrics as well as metrics that allow us to compare topics, networks, and locations of tweets. The results of our work will help researchers and practitioners understand the implications of using the Streaming API.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3