Scalable Sequential Spectral Clustering

Author:

Li Yeqing,Huang Junzhou,Liu Wei

Abstract

In the past decades, Spectral Clustering (SC) has become one of the most effective clustering approaches. Although it has been widely used, one significant drawback of SC is its expensive computation cost. Many efforts have been devoted to accelerating SC algorithms and promising results have been achieved. However, most of the existing algorithms rely on the assumption that data can be stored in the computer memory. When data cannot fit in the memory, these algorithms will suffer severe performance degradations. In order to overcome this issue, we propose a novel sequential SC algorithm for tackling large-scale clustering with limited computational resources, \textit{e.g.}, memory. We begin with investigating an effective way of approximating the graph affinity matrix via leveraging a bipartite graph. Then we choose a smart graph construction and optimization strategy to avoid random access to data. These efforts lead to an efficient SC algorithm whose memory usage is independent of the number of input data points. Extensive experiments carried out on large datasets demonstrate that the proposed sequential SC algorithm is up to a thousand times faster than the state-of-the-arts.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Learning Structure Aware Deep Spectral Embedding;IEEE Transactions on Image Processing;2023

2. Centerless Clustering;IEEE Transactions on Pattern Analysis and Machine Intelligence;2023-01-01

3. Efficient and Robust MultiView Clustering With Anchor Graph Regularization;IEEE Transactions on Circuits and Systems for Video Technology;2022-09

4. Improving Spectral Clustering Using Spectrum-Preserving Node Aggregation;2022 26th International Conference on Pattern Recognition (ICPR);2022-08-21

5. Robust landmark graph-based clustering for high-dimensional data;Neurocomputing;2022-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3