Deep Hashing Network for Efficient Similarity Retrieval

Author:

Zhu Han,Long Mingsheng,Wang Jianmin,Cao Yue

Abstract

Due to the storage and retrieval efficiency, hashing has been widely deployed to approximate nearest neighbor search for large-scale multimedia retrieval. Supervised hashing, which improves the quality of hash coding by exploiting the semantic similarity on data pairs, has received increasing attention recently. For most existing supervised hashing methods for image retrieval, an image is first represented as a vector of hand-crafted or machine-learned features, followed by another separate quantization step that generates binary codes. However, suboptimal hash coding may be produced, because the quantization error is not statistically minimized and the feature representation is not optimally compatible with the binary coding. In this paper, we propose a novel Deep Hashing Network (DHN) architecture for supervised hashing, in which we jointly learn good image representation tailored to hash coding and formally control the quantization error. The DHN model constitutes four key components: (1) a sub-network with multiple convolution-pooling layers to capture image representations; (2) a fully-connected hashing layer to generate compact binary hash codes; (3) a pairwise cross-entropy loss layer for similarity-preserving learning; and (4) a pairwise quantization loss for controlling hashing quality. Extensive experiments on standard image retrieval datasets show the proposed DHN model yields substantial boosts over latest state-of-the-art hashing methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 148 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pyramid transformer-based triplet hashing for robust visual place recognition;Computer Vision and Image Understanding;2024-12

2. STPCNN: Selection of transfer parameters in convolutional neural networks;Expert Systems;2024-09-12

3. An intelligent deep hash coding network for content-based medical image retrieval for healthcare applications;Egyptian Informatics Journal;2024-09

4. Deep Robust Hashing Using Self-Distillation for Remote Sensing Image Retrieval;IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium;2024-07-07

5. NDSEARCH: Accelerating Graph-Traversal-Based Approximate Nearest Neighbor Search through Near Data Processing;2024 ACM/IEEE 51st Annual International Symposium on Computer Architecture (ISCA);2024-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3