The Complexity of LTL on Finite Traces: Hard and Easy Fragments

Author:

Fionda Valeria,Greco Gianluigi

Abstract

This paper focuses on LTL on finite traces (LTLf) for which satisfiability is known to be PSPACE-complete. However, little is known about the computational properties of fragments of LTLf. In this paper we fill this gap and make the following contributions. First, we identify several LTLf fragments for which the complexity of satisfiability drops to NP-complete or even P, by considering restrictions on the temporal operators and Boolean connectives being allowed. Second, we study a semantic variant of LTLf, which is of interest in the domain of business processes, where models have the property that precisely one propositional variable evaluates true at each time instant. Third, we introduce a reasoner for LTLf and compare its performance with the state of the art.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting bots with temporal logic;Synthese;2023-08-28

2. Measurement of Rule-based LTLf Declarative Process Specifications;2022 4th International Conference on Process Mining (ICPM);2022-10-23

3. Temporal-logic query checking over finite data streams;International Journal on Software Tools for Technology Transfer;2022-04-05

4. Measuring Inconsistency in Declarative Process Specifications;Lecture Notes in Computer Science;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3