Author:
Liu Xinwang,Dou Yong,Yin Jianping,Wang Lei,Zhu En
Abstract
Multiple kernel k-means (MKKM) clustering aims to optimally combine a group of pre-specified kernels to improve clustering performance. However, we observe that existing MKKM algorithms do not sufficiently consider the correlation among these kernels. This could result in selecting mutually redundant kernels and affect the diversity of information sources utilized for clustering, which finally hurts the clustering performance. To address this issue, this paper proposes an MKKM clustering with a novel, effective matrix-induced regularization to reduce such redundancy and enhance the diversity of the selected kernels. We theoretically justify this matrix-induced regularization by revealing its connection with the commonly used kernel alignment criterion. Furthermore, this justification shows that maximizing the kernel alignment for clustering can be viewed as a special case of our approach and indicates the extendability of the proposed matrix-induced regularization for designing better clustering algorithms. As experimentally demonstrated on five challenging MKL benchmark data sets, our algorithm significantly improves existing MKKM and consistently outperforms the state-of-the-art ones in the literature, verifying the effectiveness and advantages of incorporating the proposed matrix-induced regularization.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献