Semisupervised Autoencoder for Sentiment Analysis

Author:

Zhai Shuangfei,Zhang Zhongfei

Abstract

In this paper, we investigate the usage of autoencoders in modeling textual data. Traditional autoencoders suffer from at least two aspects: scalability with the high dimensionality of vocabulary size and dealing with task-irrelevant words. We address this problem by introducing supervision via the loss function of autoencoders. In particular, we first train a linear classifier on the labeled data, then define a loss for the autoencoder with the weights learned from the linear classifier. To reduce the bias brought by one single classifier, we define a posterior probability distribution on the weights of the classifier, and derive the marginalized loss of the autoencoder with Laplace approximation. We show that our choice of loss function can be rationalized from the perspective of Bregman Divergence, which justifies the soundness of our model. We evaluate the effectiveness of our model on six sentiment analysis datasets, and show that our model significantly outperforms all the competing methods with respect to classification accuracy. We also show that our model is able to take advantage of unlabeled dataset and get improved performance. We further show that our model successfully learns highly discriminative feature maps, which explains its superior performance.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. "Challenges and future in deep learning for sentiment analysis: a comprehensive review and a proposed novel hybrid approach";Artificial Intelligence Review;2024-03-05

2. Bridging Social Media and Cryptocurrency: A Deep Learning-Based Twitter Sentiment Analysis for Bitcoin Market;Lecture Notes in Networks and Systems;2024

3. Optimizing E-Sports Revenue: A Novel Data Driven Approach to Predicting Merchandise Sales Through Data Analytics and Machine Learning;Lecture Notes in Networks and Systems;2024

4. Bidirectional Backpropagation Autoencoding Networks for Image Compression and Denoising;2023 International Conference on Machine Learning and Applications (ICMLA);2023-12-15

5. Sentiment Analysis Tools and Techniques: A Review;2022 IEEE 13th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON);2022-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3