Joint Word Representation Learning Using a Corpus and a Semantic Lexicon

Author:

Bollegala Danushka,Alsuhaibani Mohammed,Maehara Takanori,Kawarabayashi Ken-ichi

Abstract

Methods for learning word representations using large text corpora have received much attention lately due to their impressive performancein numerous natural language processing (NLP) tasks such as, semantic similarity measurement, and word analogy detection.Despite their success, these data-driven word representation learning methods do not considerthe rich semantic relational structure between words in a co-occurring context. On the other hand, already much manual effort has gone into the construction of semantic lexicons such as the WordNetthat represent the meanings of words by defining the various relationships that exist among the words in a language.We consider the question, can we improve the word representations learnt using a corpora by integrating theknowledge from semantic lexicons?. For this purpose, we propose a joint word representation learning method that simultaneously predictsthe co-occurrences of two words in a sentence subject to the relational constrains given by the semantic lexicon.We use relations that exist between words in the lexicon to regularize the word representations learnt from the corpus.Our proposed method statistically significantly outperforms previously proposed methods for incorporating semantic lexicons into wordrepresentations on several benchmark datasets for semantic similarity and word analogy.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-stage attention network for fault diagnosis and retrieval of fault logs;Expert Systems with Applications;2024-09

2. TransDrift: Modeling Word-Embedding Drift using Transformer;Companion Proceedings of the ACM Web Conference 2024;2024-05-13

3. On generalization of the sense retrofitting model;Natural Language Engineering;2023-03-31

4. Learning interpretable word embeddings via bidirectional alignment of dimensions with semantic concepts;Information Processing & Management;2022-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3