DRIMUX: Dynamic Rumor Influence Minimization with User Experience in Social Networks

Author:

Wang Biao,Chen Ge,Fu Luoyi,Song Li,Wang Xinbing,Liu Xue

Abstract

Rumor blocking is a serious problem in large-scale social networks. Malicious rumors could cause chaos in society and hence need to be blocked as soon as possible after being detected. In this paper, we propose a model of dynamic rumor influence minimization with user experience (DRIMUX). Our goal is to minimize the influence of the rumor (i.e., the number of users that have accepted and sent the rumor) by blocking a certain subset of nodes. A dynamic Ising propagation model considering both the global popularity and individual attraction of the rumor is presented based on realistic scenario. In addition, different from existing problems of influence minimization, we take into account the constraint of user experience utility. Specifically, each node is assigned a tolerance time threshold. If the blocking time of each user exceeds that threshold, the utility of the network will decrease. Under this constraint, we then formulate the problem as a network inference problem with survival theory, and propose solutions based on maximum likelihood principle. Experiments are implemented based on large-scale real world networks and validate the effectiveness of our method.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stochastic Model for Rumor Blocking Problem in Social Networks Under Rumor Source Uncertainty;Lecture Notes in Computer Science;2023-12-09

2. Influence blocking maximization under refutation;Social Network Analysis and Mining;2023-10-29

3. Minimizing the Influence of Misinformation via Vertex Blocking;2023 IEEE 39th International Conference on Data Engineering (ICDE);2023-04

4. Detecting rumours with latency guarantees using massive streaming data;The VLDB Journal;2022-06-08

5. Target Node Protection from Rumours in Online Social Networks;Advances in Data Computing, Communication and Security;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3