CariesXrays: Enhancing Caries Detection in Hospital-Scale Panoramic Dental X-rays via Feature Pyramid Contrastive Learning

Author:

Chen Bingzhi,Fu Sisi,Liu Yishu,Pan Jiahui,Lu Guangming,Zhang Zheng

Abstract

Dental caries has been widely recognized as one of the most prevalent chronic diseases in the field of public health. Despite advancements in automated diagnosis across various medical domains, it remains a substantial challenge for dental caries detection due to its inherent variability and intricacies. To bridge this gap, we release a hospital-scale panoramic dental X-ray benchmark, namely “CariesXrays”, to facilitate the advancements in high-precision computer-aided diagnosis for dental caries. It comprises 6,000 panoramic dental X-ray images, with a total of 13,783 instances of dental caries, all meticulously annotated by dental professionals. In this paper, we propose a novel Feature Pyramid Contrastive Learning (FPCL) framework, that jointly incorporates feature pyramid learning and contrastive learning within a unified diagnostic paradigm for automated dental caries detection. Specifically, a robust dual-directional feature pyramid network (D2D-FPN) is designed to adaptively capture rich and informative contextual information from multi-level feature maps, thus enhancing the generalization ability of caries detection across different scales. Furthermore, our model is augmented with an effective proposals-prototype contrastive regularization learning (P2P-CRL) mechanism, which can flexibly bridge the semantic gaps among diverse dental caries with varying appearances, resulting in high-quality dental caries proposals. Extensive experiments on our newly-established CariesXrays benchmark demonstrate the potential of FPCL to make a significant social impact on caries diagnosis.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Attention-Guided and Noise-Resistant Learning for Robust Medical Image Segmentation;IEEE Transactions on Instrumentation and Measurement;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3