Author:
Zhu Chengyuan,Yang Yiyuan,Yang Kaixiang,Zhang Haifeng,Yang Qinmin,Chen C. L. Philip
Abstract
The application of artificial intelligence technology has greatly enhanced and fortified the safety of energy pipelines, particularly in safeguarding against external threats. The predominant methods involve the integration of intelligent sensors to detect external vibration, enabling the identification of event types and locations, thereby replacing manual detection methods. However, practical implementation has exposed a limitation in current methods - their constrained ability to accurately discern the spatial dimensions of external signals, which complicates the authentication of threat events. Our research endeavors to overcome the above issues by harnessing deep learning techniques to achieve a more fine-grained recognition and localization process. This refinement is crucial in effectively identifying genuine threats to pipelines, thus enhancing the safety of energy transportation. This paper proposes a radial threat estimation method for energy pipelines based on distributed optical fiber sensing technology. Specifically, we introduce a continuous multi-view and multi-domain feature fusion methodology to extract comprehensive signal features and construct a threat estimation and recognition network. The utilization of collected acoustic signal data is optimized, and the underlying principle is elucidated. Moreover, we incorporate the concept of transfer learning through a pre-trained model, enhancing both recognition accuracy and training efficiency. Empirical evidence gathered from real-world scenarios underscores the efficacy of our method, notably in its substantial reduction of false alarms and remarkable gains in recognition accuracy. More generally, our method exhibits versatility and can be extrapolated to a broader spectrum of recognition tasks and scenarios.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献