Author:
Cai Yan,Wang Linlin,Wang Ye,De Melo Gerard,Zhang Ya,Wang Yanfeng,He Liang
Abstract
The emergence of various medical large language models (LLMs) in the medical domain has highlighted the need for unified evaluation standards, as manual evaluation of LLMs proves to be time-consuming and labor-intensive. To address this issue, we introduce MedBench, a comprehensive benchmark for the Chinese medical domain, comprising 40,041 questions sourced from authentic examination exercises and medical reports of diverse branches of medicine. In particular, this benchmark is composed of four key components: the Chinese Medical Licensing Examination, the Resident Standardization Training Examination, the Doctor In-Charge Qualification Examination, and real-world clinic cases encompassing examinations, diagnoses, and treatments. MedBench replicates the educational progression and clinical practice experiences of doctors in Mainland China, thereby establish- ing itself as a credible benchmark for assessing the mastery of knowledge and reasoning abilities in medical language learning models. We perform extensive experiments and conduct an in-depth analysis from diverse perspectives, which culminate in the following findings: (1) Chinese medical LLMs underperform on this benchmark, highlighting the need for significant advances in clinical knowledge and diagnostic precision. (2) Several general-domain LLMs surprisingly possess considerable medical knowledge. These findings elucidate both the capabilities and limitations of LLMs within the context of MedBench, with the ultimate goal of aiding the medical research community.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. RareBench: Can LLMs Serve as Rare Diseases Specialists?;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24