Author:
Cai Jie,Wang Xin,Li Haoyang,Zhang Ziwei,Zhu Wenwu
Abstract
Multimodal graph neural architecture search (MGNAS) has shown great success for automatically designing the optimal multimodal graph neural network (MGNN) architecture by leveraging multimodal representation, crossmodal information and graph structure in one unified framework. However, existing MGNAS fails to handle distribution shifts that naturally exist in multimodal graph data, since the searched architectures inevitably capture spurious statistical correlations under distribution shifts. To solve this problem, we propose a novel Out-of-distribution Generalized Multimodal Graph Neural Architecture Search (OMG-NAS) method which optimizes the MGNN architecture with respect to its performance on decorrelated OOD data. Specifically, we propose a multimodal graph representation decorrelation strategy, which encourages the searched MGNN model to output representations that eliminate spurious correlations through iteratively optimizing the feature weights and controller. In addition, we propose a global sample weight estimator that facilitates the sharing of optimal sample weights learned from existing architectures. This design promotes the effective estimation of the sample weights for candidate MGNN architectures to generate decorrelated multimodal graph representations, concentrating more on the truly predictive relations between invariant features and ground-truth labels. Extensive experiments on real-world multimodal graph datasets demonstrate the superiority of our proposed method over SOTA baselines.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Towards Lightweight Graph Neural Network Search with Curriculum Graph Sparsification;Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining;2024-08-24
2. Advances in neural architecture search;National Science Review;2024-07-12