Author:
Anil Gautham,Vinod Vishnu,Narayan Apurva
Abstract
Quantum Machine Learning (QML) has emerged as a promising field of research, aiming to leverage the capabilities of quantum computing to enhance existing machine learning methodologies. Recent studies have revealed that, like their classical counterparts, QML models based on Parametrized Quantum Circuits (PQCs) are also vulnerable to adversarial attacks. Moreover, the existence of Universal Adversarial Perturbations (UAPs) in the quantum domain has been demonstrated theoretically in the context of quantum classifiers. In this work, we introduce QuGAP: a novel framework for generating UAPs for quantum classifiers. We conceptualize the notion of additive UAPs for PQC-based classifiers and theoretically demonstrate their existence. We then utilize generative models (QuGAP-A) to craft additive UAPs and experimentally show that quantum classifiers are susceptible to such attacks. Moreover, we formulate a new method for generating unitary UAPs (QuGAP-U) using quantum generative models and a novel loss function based on fidelity constraints. We evaluate the performance of the proposed framework and show that our method achieves state-of-the-art misclassification rates, while maintaining high fidelity between legitimate and adversarial samples.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. QuanTest: Entanglement-Guided Testing of Quantum Neural Network Systems;ACM Transactions on Software Engineering and Methodology;2024-08-19