Twitter Sentiment Analysis: The Good the Bad and the OMG!

Author:

Kouloumpis Efthymios,Wilson Theresa,Moore Johanna

Abstract

In this paper, we investigate the utility of linguistic features for detecting the sentiment of Twitter messages. We evaluate the usefulness of existing lexical resources as well as features that capture information about the informal and creative language used in microblogging. We take a supervied approach to the problem, but leverage existing hashtags in the Twitter data for building training data.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Data augmentation using instruction-tuned models improves emotion analysis in tweets;Social Network Analysis and Mining;2024-08-03

2. Decoding the black box: LIME-assisted understanding of Convolutional Neural Network (CNN) in classification of social media tweets;Social Network Analysis and Mining;2024-07-09

3. The Politics of Eurovision: A Case Study of the United Kingdom’s 2021 and 2022 Participations as Expressed on Social Media;Revista de Lingüística y Lenguas Aplicadas;2024-07-08

4. Hybrid Deep Learning Approach for Sentiment Analysis on Twitter Data;Multimedia Tools and Applications;2024-06-19

5. Sentiment Analysis of Twitter Data;International Journal of Advanced Research in Science, Communication and Technology;2024-05-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3