Scaling Up Search with Partial Initial States in Optimization Crosswords

Author:

Botea Adi,Bulitko Vadim

Abstract

Heuristic search remains a leading approach to difficult combinatorial optimization problems. Search algorithms can utilize pruning based on comparing a target score with an admissible (optimistic) estimate of the best score that can be achieved from a given state. If the former is larger they prune the state. However, when the target score is too high the search can fail by exhausting the space without finding a solution. In this paper we show that such failed searches can still be valuable. Specifically, best partial solutions encountered in such failed searches can often bear a high similarity to the corresponding part of a full high-quality or even optimal solution. Thus, a new search for a full solution, with a lower target score, can start with a best known partial solution, rather than starting from scratch. We demonstrate our ideas in a constraint optimization problem modelled on the Romanian Crosswords Competition, a challenging problem where humans perform much better than computers. Utilizing partial solutions produced by a failed search cuts down the running time of an existing state-of-the-art solver by orders of magnitude on competition-level crossword puzzle instances and allows to solve more instances.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extended Seeds in Optimization Crosswords;2024 IEEE Conference on Games (CoG);2024-08-05

2. Generating and Solving Champion-Level Romanian Crosswords Puzzles;2023 IEEE Conference on Games (CoG);2023-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3