The Fractal Nature of the Semantic Web

Author:

Berners-Lee Tim,Kagal Lalana

Abstract

In the past, many knowledge representation systems failed because they were too monolithic and didn’t scale well, whereas other systems failed to have an impact because they were small and isolated. Along with this trade-off in size, there is also a constant tension between the cost involved in building a larger community that can interoperate through common terms and the cost of the lack of interoperability. The semantic web offers a good compromise between these approaches as it achieves wide-scale communication and interoperability using finite effort and cost. The semantic web is a set of standards for knowledge representation and exchange that is aimed at providing interoperability across applications and organizations. We believe that the gathering success of this technology is not derived from the particular choice of syntax or of logic. Its main contribution is in recognizing and supporting the fractal patterns of scalable web systems. These systems will be composed of many overlapping communities of all sizes, ranging from one individual to the entire population that have internal (but not global) consistency. The information in these systems, including documents and messages, will contain some terms that are understood and accepted globally, some that are understood within certain communities, and some that are understood locally within the system. The amount of interoperability between interacting agents (software or human) will depend on how many communities they have in common and how many ontologies (groups of consistent and related terms) they share. In this article we discuss why fractal patterns are an appropriate model for web systems and how semantic web technologies can be used to design scalable and interoperable systems.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

Artificial Intelligence

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Integration of the Japan Link Center’s Bibliographic Data into OpenCitations;Journal of Open Humanities Data;2024

2. Open Bibliographical Data Workflows and the Multilinguality Challenge;Journal of Open Humanities Data;2024

3. Exploring dimensions influencing the usage of Open Government Data portals;Proceedings of the 12th International Conference on Intelligent Systems: Theories and Applications;2018-10-24

4. Language documentation: a reference point for theatre and performance archives?;International Journal of Performance Arts and Digital Media;2018-01-02

5. The Universal Ontology: A Vision for Conceptual Modeling and the Semantic Web (Invited Paper);Conceptual Modeling;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3