Author:
Jing Yongcheng,Liu Xiao,Ding Yukang,Wang Xinchao,Ding Errui,Song Mingli,Wen Shilei
Abstract
Prior normalization methods rely on affine transformations to produce arbitrary image style transfers, of which the parameters are computed in a pre-defined way. Such manually-defined nature eventually results in the high-cost and shared encoders for both style and content encoding, making style transfer systems cumbersome to be deployed in resource-constrained environments like on the mobile-terminal side. In this paper, we propose a new and generalized normalization module, termed as Dynamic Instance Normalization (DIN), that allows for flexible and more efficient arbitrary style transfers. Comprising an instance normalization and a dynamic convolution, DIN encodes a style image into learnable convolution parameters, upon which the content image is stylized. Unlike conventional methods that use shared complex encoders to encode content and style, the proposed DIN introduces a sophisticated style encoder, yet comes with a compact and lightweight content encoder for fast inference. Experimental results demonstrate that the proposed approach yields very encouraging results on challenging style patterns and, to our best knowledge, for the first time enables an arbitrary style transfer using MobileNet-based lightweight architecture, leading to a reduction factor of more than twenty in computational cost as compared to existing approaches. Furthermore, the proposed DIN provides flexible support for state-of-the-art convolutional operations, and thus triggers novel functionalities, such as uniform-stroke placement for non-natural images and automatic spatial-stroke control.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Arbitrary style transfer via multi-feature correlation;Computers & Graphics;2024-10
2. Arbitrary style transformation algorithm based on multi-scale fusion and compressed attention in art and design;Intelligent Decision Technologies;2024-06-26
3. Style Migration Based on the Loss Function of Location Information;Journal of Advanced Computational Intelligence and Intelligent Informatics;2024-05-20
4. Vision Transformer With Quadrangle Attention;IEEE Transactions on Pattern Analysis and Machine Intelligence;2024-05
5. Lighting Image/Video Style Transfer Methods by Iterative Channel Pruning;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14