Author:
An Bo,Shieh Eric,Tambe Milind,Yang Rong,Baldwin Craig,DiRenzo Joseph,Maule Ben,Meyer Garrett
Abstract
While three deployed applications of game theory for security have recently been reported, we as a community of agents and AI researchers remain in the early stages of these deployments; there is a continuing need to understand the core principles for innovative security applications of game theory. Towards that end, this paper presents PROTECT, a game-theoretic system deployed by the United States Coast Guard (USCG) in the port of Boston for scheduling their patrols. USCG has termed the deployment of PROTECT in Boston a success, and efforts are underway to test it in the port of New York, with the potential for nationwide deployment.PROTECT is premised on an attacker-defender Stackelberg game model and offers five key innovations. First, this system is a departure from the assumption of perfect adversary rationality noted in previous work, relying instead on a quantal response (QR) model of the adversary's behavior --- to the best of our knowledge, this is the first real-world deployment of the QR model. Second, to improve PROTECT's efficiency, we generate a compact representation of the defender's strategy space, exploiting equivalence and dominance. Third, we show how to practically model a real maritime patrolling problem as a Stackelberg game. Fourth, our experimental results illustrate that PROTECT's QR model more robustly handles real-world uncertainties than a perfect rationality model. Finally, in evaluating PROTECT, this paper for the first time provides real-world data: (i) comparison of human-generated vs PROTECT security schedules, and (ii) results from an Adversarial Perspective Team's (human mock attackers) analysis.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献