Author:
Bacon Pierre-Luc,Precup Doina
Abstract
The idea of temporal abstraction, i.e. learning, planning and representing the world at multiple time scales, has been a constant thread in AI research, spanning sub-fields from classical planning and search to control and reinforcement learning. For example, programming a robot typically involves making decisions over a set of controllers, rather than working at the level of motor torques. While temporal abstraction is a very natural concept, learning such abstractions with no human input has proved quite daunting. In this paper, we present a general architecture, called option-critic, which allows learning temporal abstractions automatically, end-to-end, simply from the agent’s experience. This approach allows continual learning and provides interesting qualitative and quantitative results in several tasks.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献