GRADE: Machine Learning Support for Graduate Admissions

Author:

Waters Austin,Miikkulainen Risto

Abstract

This article describes GRADE, a statistical machine learning system developed to support the work of the graduate admissions committee at the University of Texas at Austin Department of Computer Science (UTCS). In recent years, the number of applications to the UTCS PhD program has become too large to manage with a traditional review process. GRADE uses historical admissions data to predict how likely the committee is to admit each new applicant. It reports each prediction as a score similar to those used by human reviewers, and accompanies each by an explanation of what applicant features most influenced its prediction. GRADE makes the review process more efficient by enabling reviewers to spend most of their time on applicants near the decision boundary and by focusing their attention on parts of each applicant’s file that matter the most. An evaluation over two seasons of PhD admissions indicates that the system leads to dramatic time savings, reducing the total time spent on reviews by at least 74 percent.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

Artificial Intelligence

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Properties of Group Fairness Measures for Rankings;ACM Transactions on Social Computing;2024-08-27

2. Algorithmic Bias: An Integrative Review and Scope for Future Research;2024-08-21

3. CARMA: A practical framework to generate recommendations for causal algorithmic recourse at scale;The 2024 ACM Conference on Fairness, Accountability, and Transparency;2024-06-03

4. Responsible Implementation of AI in Higher Education: Ethical Factors Guiding Dutch IT Teachers;Resilience Through Digital Innovation: Enabling the Twin Transition;2024-05-29

5. Software doping analysis for human oversight;Formal Methods in System Design;2024-04-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3