Abstract
The problem of controlling energy systems (generation, transmission, storage, investment) introduces a number of optimization problems which need to be solved in the presence of different types of uncertainty. We highlight several of these applications, using a simple energy storage problem as a case application. Using this setting, we describe a modeling framework based around five fundamental dimensions which is more natural than the standard canonical form widely used in the reinforcement learning community. The framework focuses on finding the best policy, where we identify four fundamental classes of policies consisting of policy function approximations (PFAs), cost function approximations (CFAs), policies based on value function approximations (VFAs), and lookahead policies. This organization unifies a number of competing strategies under a common umbrella.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献