Adaptive Transfer Learning

Author:

Cao Bin,Pan Sinno Jialin,Zhang Yu,Yeung Dit-Yan,Yang Qiang

Abstract

Transfer learning aims at reusing the knowledge in some source tasks to improve the learning of a target task. Many transfer learning methods assume that the source tasks and the target task be related, even though many tasks are not related in reality. However, when two tasks are unrelated, the knowledge extracted from a source task may not help, and even hurt, the performance of a target task. Thus, how to avoid negative transfer and then ensure a "safe transfer" of knowledge is crucial in transfer learning. In this paper, we propose an Adaptive Transfer learning algorithm based on Gaussian Processes (AT-GP), which can be used to adapt the transfer learning schemes by automatically estimating the similarity between a source and a target task. The main contribution of our work is that we propose a new semi-parametric transfer kernel for transfer learning from a Bayesian perspective, and propose to learn the model with respect to the target task, rather than all tasks as in multi-task learning. We can formulate the transfer learning problem as a unified Gaussian Process (GP) model. The adaptive transfer ability of our approach is verified on both synthetic and real-world datasets.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transferable preference learning in multi-objective decision analysis and its application to hydrocracking;Complex & Intelligent Systems;2024-07-15

2. Transfer Learning of Surrogate Models via Domain Affine Transformation;Proceedings of the Genetic and Evolutionary Computation Conference;2024-07-14

3. Bayesian Inverse Transfer in Evolutionary Multiobjective Optimization;ACM Transactions on Evolutionary Learning and Optimization;2024-06-28

4. Brain Tumor Detection based on Multiple Deep Learning Models for MRI Images;EAI Endorsed Transactions on Pervasive Health and Technology;2024-03-21

5. Smart Traffic Management Using Transfer Learning Approach for Improve Urban Mobility;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2024-03-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3