Author:
Long Jeffrey,Sturtevant Nathan,Buro Michael,Furtak Timothy
Abstract
Perfect Information Monte Carlo (PIMC) search is a practical technique for playing imperfect information games that are too large to be optimally solved. Although PIMC search has been criticized in the past for its theoretical deficiencies, in practice it has often produced strong results in a variety of domains. In this paper, we set out to resolve this discrepancy. The contributions of the paper are twofold. First, we use synthetic game trees to identify game properties that result in strong or weak performance for PIMC search as compared to an optimal player. Second, we show how these properties can be detected in real games, and demonstrate that they do indeed appear to be good predictors of the strength of PIMC search. Thus, using the tools established in this paper, it should be possible to decide a priori whether PIMC search will be an effective approach to new and unexplored games.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献