Author:
De Campos Cassio,Ji Qiang
Abstract
This paper addresses exact learning of Bayesian network structure from data based on the Bayesian Dirichlet score function and its derivations. We describe useful properties that strongly reduce the computational costs of many known methods without losing global optimality guarantees. We show empirically the advantages of the properties in terms of time and memory consumptions, demonstrating that state-of-the-art methods, with the use of such properties, might handle larger data sets than those currently possible.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献