AI-Based Software Defect Predictors: Applications and Benefits in a Case Study

Author:

Tosun Ayse,Bener Ayse,Kale Resat

Abstract

Software defect prediction aims to reduce software testing efforts by guiding testers through the defect-prone sections of software systems. Defect predictors are widely used in organizations to predict defects in order to save time and effort as an alternative to other techniques such as manual code reviews. The application of a defect prediction model in a real-life setting is difficult because it requires software metrics and defect data from past projects to predict the defect-proneness of new projects. It is, on the other hand, very practical because it is easy to apply, can detect defects using less time and reduces the testing effort. We have built a learning-based defect prediction model for a telecommunication company during a period of one year. In this study, we have briefly explained our model, presented its pay-off and described how we have implemented the model in the company. Furthermore, we have compared the performance of our model with that of another testing strategy applied in a pilot project that implemented a new process called Team Software Process (TSP). Our results show that defect predictors can be used as supportive tools during a new process implementation, predict 75% of code defects, and decrease the testing time compared with 25% of the code defects detected through more labor-intensive strategies such as code reviews and formal checklists.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. When less is more: on the value of “co-training” for semi-supervised software defect predictors;Empirical Software Engineering;2024-02-24

2. AI-Based Software Testing;Lecture Notes in Networks and Systems;2024

3. Building Trust in AI -A Simplified Guide to Ensure Software Quality;Journal of Soft Computing Paradigm;2023-09

4. Is GitHub copilot a substitute for human pair-programming?;Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings;2022-05-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3