Author:
Tosun Ayse,Bener Ayse,Kale Resat
Abstract
Software defect prediction aims to reduce software testing efforts by guiding testers through the defect-prone sections of software systems. Defect predictors are widely used in organizations to predict defects in order to save time and effort as an alternative to other techniques such as manual code reviews. The application of a defect prediction model in a real-life setting is difficult because it requires software metrics and defect data from past projects to predict the defect-proneness of new projects. It is, on the other hand, very practical because it is easy to apply, can detect defects using less time and reduces the testing effort. We have built a learning-based defect prediction model for a telecommunication company during a period of one year. In this study, we have briefly explained our model, presented its pay-off and described how we have implemented the model in the company. Furthermore, we have compared the performance of our model with that of another testing strategy applied in a pilot project that implemented a new process called Team Software Process (TSP). Our results show that defect predictors can be used as supportive tools during a new process implementation, predict 75% of code defects, and decrease the testing time compared with 25% of the code defects detected through more labor-intensive strategies such as code reviews and formal checklists.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. When less is more: on the value of “co-training” for semi-supervised software defect predictors;Empirical Software Engineering;2024-02-24
2. AI-Based Software Testing;Lecture Notes in Networks and Systems;2024
3. Building Trust in AI -A Simplified Guide to Ensure Software Quality;Journal of Soft Computing Paradigm;2023-09
4. Is GitHub copilot a substitute for human pair-programming?;Proceedings of the ACM/IEEE 44th International Conference on Software Engineering: Companion Proceedings;2022-05-21