Mining and Visualizing Online Web Content Using BAM: Brand Association Map

Author:

Akiva Navot,Greitzer Eliyahu,Krichman Yakir,Schler Jonathan

Abstract

In this paper, we describe our Brand Association Map (BAM) tool which maps and visualizes the way consumers naturally think and talk about brands across billions of unaided conversations online. BAM is a semi-supervised tool that leverages text-mining algorithms to identify key correlated phrases, terms and issues out of millions of candidate terms which were derived from billions of online conversations. The most correlated phrases with a given brand are then projected and plotted onto visual bull's eye representation. BAM's visualization illustrates both the correlation level between a brand (appears in the center of the visualization) and each of the highly correlated terms as well as the inner correlations among all presented terms, where terms on the same radial angel represent a "clustered" discussion of terms frequently mentioned together. We found BAM useful for extracting various intuitions and beliefs that are highly correlated with brands to better grasp how consumers really contextualize them, out of massive consumer generated media (CGM) documents.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3