IA-GM: A Deep Bidirectional Learning Method for Graph Matching

Author:

Zhao Kaixuan,Tu Shikui,Xu Lei

Abstract

Existing deep learning methods for graph matching(GM) problems usually considered affinity learningto assist combinatorial optimization in a feedforward pipeline, and parameter learning is executed by back-propagating the gradients of the matching loss. Such a pipeline pays little attention to the possible complementary benefit from the optimization layer to the learning component. In this paper, we overcome the above limitation under a deep bidirectional learning framework.Our method circulates the output of the GM optimization layer to fuse with the input for affinity learning. Such direct feedback enhances the input by a feature enrichment and fusion technique, which exploits andintegrates the global matching patterns from the deviation of the similarity permuted by the current matching estimate. As a result, the circulation enables the learning component to benefit from the optimization process, taking advantage of both global feature and the embedding result which is calculated by local propagationthrough node-neighbors. Moreover, circulation consistency induces an unsupervised loss that can be implemented individually or jointly to regularize the supervised loss. Experiments on challenging datasets demonstrate the effectiveness of our methods for both supervised learning and unsupervised learning.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ensemble Quadratic Assignment Network for Graph Matching;International Journal of Computer Vision;2024-04-13

2. Neuron tracking in C. elegans through automated anchor neuron localization and segmentation;Computational Optical Imaging and Artificial Intelligence in Biomedical Sciences;2024-03-13

3. PP-GNN: Pretraining Position-aware Graph Neural Networks with the NP-hard metric dimension problem;Neurocomputing;2023-12

4. Deep Learning of Partial Graph Matching via Differentiable Top-K;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR);2023-06

5. IA-CL: A Deep Bidirectional Competitive Learning Method for Traveling Salesman Problem;Neural Information Processing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3