Scheduling of Time-Varying Workloads Using Reinforcement Learning

Author:

Mondal Shanka Subhra,Sheoran Nikhil,Mitra Subrata

Abstract

Resource usage of production workloads running on shared compute clusters often fluctuate significantly across time. While simultaneous spike in the resource usage between two workloads running on the same machine can create performance degradation, unused resources in a machine results in wastage and undesirable operational characteristics for a compute cluster. Prior works did not consider such temporal resource fluctuations or their alignment for scheduling decisions. Due to the variety of time-varying workloads, their complex resource usage characteristics, it is challenging to design well-defined heuristics for scheduling them optimally across different machines in a cluster. In this paper, we propose a Deep Reinforcement Learning (DRL) based approach to exploit various temporal resource usage patterns of time varying workloads as well as a technique for creating equivalence classes among a large number of production workloads to improve scalability of our method. Validations with real production traces from Google and Alibaba show that our technique can significantly improve metrics for operational excellence (e.g. utilization, fragmentation, resource exhaustion etc.) for a cluster, compared to the baselines.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. PheCon: Fine-Grained VM Consolidation with Nimble Resource Defragmentation in Public Cloud Platforms;Proceedings of the 53rd International Conference on Parallel Processing;2024-08-12

2. BCEdge: SLO-Aware DNN Inference Services With Adaptive Batch-Concurrent Scheduling on Edge Devices;IEEE Transactions on Network and Service Management;2024-08

3. Batch Jobs Load Balancing Scheduling in Cloud Computing Using Distributional Reinforcement Learning;IEEE Transactions on Parallel and Distributed Systems;2024-01

4. Gödel;Proceedings of the 2023 ACM Symposium on Cloud Computing;2023-10-30

5. Action Masked Deep Reinforcement learning for Controlling Industrial Assembly Lines;2023 IEEE World AI IoT Congress (AIIoT);2023-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3