Author:
Yamshchikov Ivan P.,Shibaev Viacheslav,Khlebnikov Nikolay,Tikhonov Alexey
Abstract
The rapid development of such natural language processing tasks as style transfer, paraphrase, and machine translation often calls for the use of semantic similarity metrics. In recent years a lot of methods to measure the semantic similarity of two short texts were developed. This paper provides a comprehensive analysis for more than a dozen of such methods. Using a new dataset of fourteen thousand sentence pairs human-labeled according to their semantic similarity, we demonstrate that none of the metrics widely used in the literature is close enough to human judgment in these tasks. A number of recently proposed metrics provide comparable results, yet Word Mover Distance is shown to be the most reasonable solution to measure semantic similarity in reformulated texts at the moment.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献