Author:
Yadav Rohan K,Jiao Lei,Granmo Ole-Christoffer,Goodwin Morten
Abstract
This paper proposes human-interpretable learning of aspect-based sentiment analysis (ABSA), employing the recently introduced Tsetlin Machines (TMs). We attain interpretability by converting the intricate position-dependent textual semantics into binary form, mapping all the features into bag-of-words (BOWs). The binary form BOWs are encoded so that the information on the aspect and context words are nearly lossless for sentiment classification. We further adapt the BOWs as input to the TM, enabling learning of aspect-based sentiment patterns in propositional logic. To evaluate interpretability and accuracy, we conducted experiments on two widely used ABSA datasets of SemEval 2014: Restaurant 14 and Laptop 14. The experiments show how each relevant feature takes part in conjunctive clauses that contain the context information for the corresponding aspect word, demonstrating human-level interpretability. At the same time, the obtained accuracy is competitive with existing neural network models, reaching 78.02% on Restaurant 14 and 73.51% on Laptop 14.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献