SSD-GAN: Measuring the Realness in the Spatial and Spectral Domains

Author:

Chen Yuanqi,Li Ge,Jin Cece,Liu Shan,Li Thomas

Abstract

This paper observes that there is an issue of high frequencies missing in the discriminator of standard GAN, and we reveal it stems from downsampling layers employed in the network architecture. This issue makes the generator lack the incentive from the discriminator to learn high-frequency content of data, resulting in a significant spectrum discrepancy between generated images and real images. Since the Fourier transform is a bijective mapping, we argue that reducing this spectrum discrepancy would boost the performance of GANs. To this end, we introduce SSD-GAN, an enhancement of GANs to alleviate the spectral information loss in the discriminator. Specifically, we propose to embed a frequency-aware classifier into the discriminator to measure the realness of the input in both the spatial and spectral domains. With the enhanced discriminator, the generator of SSD-GAN is encouraged to learn high-frequency content of real data and generate exact details. The proposed method is general and can be easily integrated into most existing GANs framework without excessive cost. The effectiveness of SSD-GAN is validated on various network architectures, objective functions, and datasets. Code is available at https://github.com/cyq373/SSD-GAN.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Unified bi-encoder bispace-discriminator disentanglement for cross-domain echocardiography segmentation;Knowledge-Based Systems;2024-11

2. Multi-Frequency-Aware Patch Adversarial Learning for Neural Point Cloud Rendering;2024 IEEE International Conference on Advanced Intelligent Mechatronics (AIM);2024-07-15

3. Pedestrian wind flow prediction using spatial-frequency generative adversarial network;Building Simulation;2023-10-21

4. On the Effectiveness of Spectral Discriminators for Perceptual Quality Improvement;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

5. Improving Sample Quality of Diffusion Models Using Self-Attention Guidance;2023 IEEE/CVF International Conference on Computer Vision (ICCV);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3