Object Relation Attention for Image Paragraph Captioning

Author:

Yang Li-Chuan,Yang Chih-Yuan,Hsu Jane Yung-jen

Abstract

Image paragraph captioning aims to automatically generate a paragraph from a given image. It is an extension of image captioning in terms of generating multiple sentences instead of a single one, and it is more challenging because paragraphs are longer, more informative, and more linguistically complicated. Because a paragraph consists of several sentences, an effective image paragraph captioning method should generate consistent sentences rather than contradictory ones. It is still an open question how to achieve this goal, and for it we propose a method to incorporate objects' spatial coherence into a language-generating model. For every two overlapping objects, the proposed method concatenates their raw visual features to create two directional pair features and learns weights optimizing those pair features as relation-aware object features for a language-generating model. Experimental results show that the proposed network extracts effective object features for image paragraph captioning and achieves promising performance against existing methods.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3