Author:
Ro Youngmin,Choi Jin Young
Abstract
Existing fine-tuning methods use a single learning rate over all layers. In this paper, first, we discuss that trends of layer-wise weight variations by fine-tuning using a single learning rate do not match the well-known notion that lower-level layers extract general features and higher-level layers extract specific features. Based on our discussion, we propose an algorithm that improves fine-tuning performance and reduces network complexity through layer-wise pruning and auto-tuning of layer-wise learning rates.
The proposed algorithm has verified the effectiveness by achieving state-of-the-art performance on the image retrieval benchmark datasets (CUB-200, Cars-196, Stanford online product, and Inshop). Code is available at https://github.com/youngminPIL/AutoLR.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献