FedRec++: Lossless Federated Recommendation with Explicit Feedback

Author:

Liang Feng,Pan Weike,Ming Zhong

Abstract

With the marriage of federated machine learning and recommender systems for privacy-aware preference modeling and personalization, there comes a new research branch called federated recommender systems aiming to build a recommendation model in a distributed way, i.e., each user is represented as a distributed client where his/her original rating data are not shared with the server or the other clients. Notice that, besides the sensitive information of a specific rating score assigned to a certain item by a user, the information of a user's rated set of items shall also be well protected. Some very recent works propose to randomly sample some unrated items for each user and then assign some virtual ratings, so that the server can not identify the scores and the set of rated items easily during the server-client interactions. However, the virtual ratings assigned to the randomly sampled items will inevitably introduce some noise to the model training process, which will then cause loss in recommendation performance. In this paper, we propose a novel lossless federated recommendation method (FedRec++) by allocating some denoising clients (i.e., users) to eliminate the noise in a privacy-aware manner. We further analyse our FedRec++ in terms of security and losslessness, and discuss its generality in the context of existing works. Extensive empirical studies clearly show the effectiveness of our FedRec++ in providing accurate and privacy-aware recommendation without much additional communication cost.

Publisher

Association for the Advancement of Artificial Intelligence (AAAI)

Subject

General Medicine

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semi-global sequential recommendation via EM-like federated training;Expert Systems with Applications;2024-08

2. FedRL: A Reinforcement Learning Federated Recommender System for Efficient Communication Using Reinforcement Selector and Hypernet Generator;ACM Transactions on Recommender Systems;2024-07-29

3. Decentralized Federated Recommendation with Privacy-aware Structured Client-level Graph;ACM Transactions on Intelligent Systems and Technology;2024-07-29

4. Revisit Targeted Model Poisoning on Federated Recommendation: Optimize via Multi-objective Transport;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

5. ReFer: Retrieval-Enhanced Vertical Federated Recommendation for Full Set User Benefit;Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval;2024-07-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3