Author:
Liu Daizong,Xu Shuangjie,Liu Xiao-Yang,Xu Zichuan,Wei Wei,Zhou Pan
Abstract
This paper addresses the task of segmenting class-agnostic objects in semi-supervised setting. Although previous detection based methods achieve relatively good performance, these approaches extract the best proposal by a greedy strategy, which may lose the local patch details outside the chosen candidate. In this paper, we propose a novel spatiotemporal graph neural network (STG-Net) to reconstruct more accurate masks for video object segmentation, which captures the local contexts by utilizing all proposals. In the spatial graph, we treat object proposals of a frame as nodes and represent their correlations with an edge weight strategy for mask context aggregation. To capture temporal information from previous frames, we use a memory network to refine the mask of current frame by retrieving historic masks in a temporal graph. The joint use of both local patch details and temporal relationships allow us to better address the challenges such as object occlusions and missing. Without online learning and fine-tuning, our STG-Net achieves state-of-the-art performance on four large benchmarks, demonstrating the effectiveness of the proposed approach.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献