Abstract
Partial multi-label learning (PML), which tackles the problem of learning multi-label prediction models from instances with overcomplete noisy annotations, has recently started gaining attention from the research community. In this paper, we propose a novel adversarial learning model, PML-GAN, under a generalized encoder-decoder framework for partial multi-label learning. The PML-GAN model uses a disambiguation network to identify irrelevant labels and uses a multi-label prediction network to map the training instances to their disambiguated label vectors, while deploying a generative adversarial network as an inverse mapping from label vectors to data samples in the input feature space. The learning of the overall model corresponds to a minimax adversarial game, which enhances the correspondence of input features with the output labels in a bi-directional mapping. Extensive experiments are conducted on both synthetic and real-world partial multi-label datasets, while the proposed model demonstrates the state-of-the-art performance.
Publisher
Association for the Advancement of Artificial Intelligence (AAAI)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献